Introduction

Fundamentals of DC Operation and Repair Tips

This book is not meant to replace the many good texts that cover the theory and design of DC machines, but to supplement them. Its purpose is twofold: to help the technician understand DC machine theory without complex formulae; and in a larger sense, to record in one place the repair procedures and tips usually learned the hard way during a long career of DC machine repair. It may take a decade or longer for a technician to become proficient and knowledgeable. We hope this book will cut many years from that timeline.

The text begins with DC theory (no math, we promise!), and then follows the logical progression of a DC machine through the service center. Disassembly, inspection and testing are covered in the initial chapters.

Subsequent chapters are organized around the main parts of a DC machine. The final chapters cover assembly, final testing and application issues. Sections focusing on components explain how those parts work, how they are made and how they can best be repaired.

Repair tips gleaned from EASA members’ decades of experience are liberally sprinkled throughout the book. While many texts about DC machines explain how they should work, this is the first (to our knowledge) to discuss all the exceptions that a repairer is liable to run across during a lifetime of working with DC machines. These might otherwise be labeled “lessons learned the hard way,” except that the reader can benefit from having all these special cases collected in one source. When possible, it is better to learn by reading than by trial and error; otherwise, the first encounter with a unique design can result in a painful “learning experience.”

A DC machine can be used interchangeably as a motor or generator, simply by changing the connection. Any DC motor can be driven and used to produce power, and any DC generator can be motorized to provide mechanical power. Although this text predominately refers to “motor;” the material applies to both motors and generators.

As with the other EASA publications—Principles of Large AC Motors, Mechanical Repair Fundamentals of Electric Motors, and Root Cause Failure Analysis—each section is designed to stand alone. The small amount of duplication is intentional, to save the reader from flipping back and forth between sections.
Table of Contents

<table>
<thead>
<tr>
<th>Section Outline</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nomenclature and Nameplate Information</td>
<td>1</td>
</tr>
<tr>
<td>DC Motor Theory</td>
<td>2</td>
</tr>
<tr>
<td>Disassembly and Inspection</td>
<td>3</td>
</tr>
<tr>
<td>Testing</td>
<td>4</td>
</tr>
<tr>
<td>Armatures</td>
<td>5</td>
</tr>
<tr>
<td>Commutators</td>
<td>6</td>
</tr>
<tr>
<td>Frames</td>
<td>7</td>
</tr>
<tr>
<td>Ventilation and Accessories</td>
<td>8</td>
</tr>
<tr>
<td>Motor Assembly and Final Testing</td>
<td>9</td>
</tr>
<tr>
<td>On-Site Troubleshooting</td>
<td>10</td>
</tr>
<tr>
<td>Failure Analysis</td>
<td>11</td>
</tr>
<tr>
<td>Index</td>
<td>12</td>
</tr>
</tbody>
</table>
Nomenclature and Nameplate Information

Section Outline

Introduction ... 1-2
(Correctly) interpreting the DC motor nameplate .. 1-2
 DC field strength ... 1-2
 Field current (amps) ... 1-2
 Current for low field voltage .. 1-3
DC motor nomenclature .. 1-4
Commutator nomenclature.. 1-5
DC frame nomenclature .. 1-6
DC armature nomenclature ... 1-6
Carbon brush and brushholder nomenclature... 1-7
Sleeve bearing nomenclature ... 1-8
Ball bearing nomenclature ... 1-8
DC Motor Theory

Section Outline

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC motor theory</td>
<td>2-2</td>
</tr>
<tr>
<td>Principles of magnets</td>
<td>2-2</td>
</tr>
<tr>
<td>Magnetic force</td>
<td>2-3</td>
</tr>
<tr>
<td>Magnetic field strength (flux)</td>
<td>2-4</td>
</tr>
<tr>
<td>Compound fields</td>
<td>2-5</td>
</tr>
<tr>
<td>Brush neutral</td>
<td>2-5</td>
</tr>
<tr>
<td>Interpoles</td>
<td>2-6</td>
</tr>
<tr>
<td>Compensating windings</td>
<td>2-7</td>
</tr>
<tr>
<td>Working neutral</td>
<td>2-8</td>
</tr>
</tbody>
</table>
Disassembly and Inspection

Section Outline

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Important first steps</td>
<td>3-2</td>
</tr>
<tr>
<td>Covers and ventilation</td>
<td>3-2</td>
</tr>
<tr>
<td>Covers</td>
<td>3-2</td>
</tr>
<tr>
<td>Blowers</td>
<td>3-3</td>
</tr>
<tr>
<td>Internal fans</td>
<td>3-4</td>
</tr>
<tr>
<td>Commutator condition</td>
<td>3-4</td>
</tr>
<tr>
<td>Mechanical condition of the commutator</td>
<td>3-5</td>
</tr>
<tr>
<td>Commutator wear patterns</td>
<td>3-5</td>
</tr>
<tr>
<td>Brushholders and brushes</td>
<td>3-8</td>
</tr>
<tr>
<td>Brush pressure and spring tension</td>
<td>3-8</td>
</tr>
<tr>
<td>Brushholders</td>
<td>3-9</td>
</tr>
<tr>
<td>Brushholder connections</td>
<td>3-9</td>
</tr>
<tr>
<td>Carbon brushes</td>
<td>3-9</td>
</tr>
<tr>
<td>DC brush life</td>
<td>3-11</td>
</tr>
<tr>
<td>Bearing condition</td>
<td>3-12</td>
</tr>
<tr>
<td>DC inspection report</td>
<td>3-13</td>
</tr>
<tr>
<td>As received connection template for 2-, 4-, and 6-pole DC machines</td>
<td>3-14</td>
</tr>
</tbody>
</table>
Testing

Section Outline

<table>
<thead>
<tr>
<th>Testing armatures</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Megohmmeter test</td>
<td>4-2</td>
</tr>
<tr>
<td>Other electrical tests</td>
<td>4-2</td>
</tr>
<tr>
<td>Low-resistance bar-to-bar test</td>
<td>4-2</td>
</tr>
<tr>
<td>Growler test</td>
<td>4-2</td>
</tr>
<tr>
<td>High-frequency bar-to-bar test</td>
<td>4-3</td>
</tr>
<tr>
<td>Surge comparison test</td>
<td>4-3</td>
</tr>
<tr>
<td>High potential test</td>
<td>4-3</td>
</tr>
<tr>
<td>Core loss test</td>
<td>4-4</td>
</tr>
<tr>
<td>Commutator testing</td>
<td>4-4</td>
</tr>
<tr>
<td>Testing field coils</td>
<td>4-4</td>
</tr>
<tr>
<td>Testing interpoles</td>
<td>4-5</td>
</tr>
<tr>
<td>AC drop test</td>
<td>4-5</td>
</tr>
<tr>
<td>Surge test</td>
<td>4-5</td>
</tr>
<tr>
<td>Current comparison (impedance test)</td>
<td>4-5</td>
</tr>
<tr>
<td>DC machine drop voltage test form</td>
<td>4-6</td>
</tr>
</tbody>
</table>
Armatures

Section Outline Page

Armature winding terms ... 5-3
 Lap windings ... 5-3
 Equalizers .. 5-4
 Wave windings ... 5-5
 Commutator pitch ... 5-6
 Frog-leg windings (See also Page 5-26) 5-6
Eddy currents in armature cores .. 5-8
Armature data ... 5-8
Armature rewinding cautions ... 5-8
 Odd turns .. 5-8
 Increasing horsepower ... 5-9
 Changing wire size .. 5-9
 Stripping the armature ... 5-9
Armature rewinding tips ... 5-10
 Preparing the core for rewind .. 5-10
 Slot liners .. 5-10
 Coils .. 5-11
 Coil insertion ... 5-11
 Fitting the coils .. 5-12
 Wedges ... 5-14
 Coil bracing .. 5-14
 Type of varnish ... 5-14
 Soldering commutators .. 5-15
 Soldering tips ... 5-15
 Production soldering ... 5-16
 Inspection of the soldered joint ... 5-16
TIG welded commutator connections .. 5-16
 Joint preparation ... 5-17
 Equipment .. 5-17
 Operator skill and proper welding procedures .. 5-17
 Summary ... 5-17

Armature banding .. 5-18
 Steel banding .. 5-18
 Fiberglass banding ... 5-18
 Converting steel banding to fiberglass .. 5-18
 Tensile strength .. 5-18
 Calculating centrifugal force .. 5-19
 Estimating the weight of the coil extensions .. 5-19
 Banding procedure ... 5-19
 Banding tips ... 5-21
 Finishing the armature ... 5-21

Balancing ... 5-21
Troubleshooting tips for armature rewinds .. 5-22
 Only one bar off .. 5-22
 Locating a grounded coil .. 5-23
 Locating a shorted coil ... 5-23
 Use growler, hacksaw blade .. 5-23
 Equalizers .. 5-24

Checking armature connections (joints) with infrared 5-24
DC machine data sheet .. 5-25
Frog-leg windings for DC machines ... 5-26
 Split-pitch coils .. 5-29
 Summary ... 5-29
Commutators

Section Outline

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commutator basics</td>
<td>6-2</td>
</tr>
<tr>
<td>Commutator designs</td>
<td>6-2</td>
</tr>
<tr>
<td>Torque values</td>
<td>6-3</td>
</tr>
<tr>
<td>Replacing V-rings</td>
<td>6-3</td>
</tr>
<tr>
<td>Replacing commutator fiberglass banding</td>
<td>6-4</td>
</tr>
<tr>
<td>Caution: Never dip a commutator</td>
<td>6-5</td>
</tr>
<tr>
<td>Turn and undercut</td>
<td>6-5</td>
</tr>
<tr>
<td>Replacing string, protective and Teflon banding</td>
<td>6-7</td>
</tr>
<tr>
<td>String band</td>
<td>6-7</td>
</tr>
<tr>
<td>Protective banding</td>
<td>6-8</td>
</tr>
<tr>
<td>Teflon banding</td>
<td>6-8</td>
</tr>
<tr>
<td>Commutator testing prior to rewinding</td>
<td>6-8</td>
</tr>
<tr>
<td>Inserted riser repairs</td>
<td>6-8</td>
</tr>
<tr>
<td>Cementious mica</td>
<td>6-8</td>
</tr>
<tr>
<td>Original (factory) and minimum commutator dimensions</td>
<td></td>
</tr>
<tr>
<td>ABB</td>
<td>6-10</td>
</tr>
<tr>
<td>Baldor</td>
<td>6-10</td>
</tr>
<tr>
<td>General Electric</td>
<td>6-10</td>
</tr>
<tr>
<td>P&H (Harnischfeger)</td>
<td>6-13</td>
</tr>
<tr>
<td>Reliance</td>
<td>6-13</td>
</tr>
<tr>
<td>Toshiba</td>
<td>6-13</td>
</tr>
<tr>
<td>WEG</td>
<td>6-14</td>
</tr>
<tr>
<td>Westinghouse</td>
<td>6-14</td>
</tr>
</tbody>
</table>
Frames

Section Outline

<table>
<thead>
<tr>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>7-2</td>
</tr>
<tr>
<td>Compound fields</td>
<td>7-2</td>
</tr>
<tr>
<td>Bucking (suicide) fields</td>
<td>7-3</td>
</tr>
<tr>
<td>Tips for rewinding</td>
<td></td>
</tr>
<tr>
<td>Shunt field coils</td>
<td>7-4</td>
</tr>
<tr>
<td>Converting from aluminum to copper wire</td>
<td>7-6</td>
</tr>
<tr>
<td>Series field coils</td>
<td>7-7</td>
</tr>
<tr>
<td>Interpoles</td>
<td>7-8</td>
</tr>
<tr>
<td>Compensating windings</td>
<td>7-10</td>
</tr>
</tbody>
</table>
Ventilation and Accessories

Section Outline

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC motor ventilation</td>
<td>8-2</td>
</tr>
<tr>
<td>Missing or improperly installed fans or auxiliary blowers</td>
<td>8-2</td>
</tr>
<tr>
<td>Missing, damaged or incorrectly installed covers and gaskets</td>
<td>8-3</td>
</tr>
<tr>
<td>Ventilation improvement tips</td>
<td>8-3</td>
</tr>
<tr>
<td>Space heaters</td>
<td>8-4</td>
</tr>
<tr>
<td>Tachometers</td>
<td>8-5</td>
</tr>
<tr>
<td>Encoders/resolvers</td>
<td>8-6</td>
</tr>
<tr>
<td>Optical encoders</td>
<td>8-6</td>
</tr>
<tr>
<td>Absolute encoders</td>
<td>8-6</td>
</tr>
<tr>
<td>Resolvers</td>
<td>8-6</td>
</tr>
<tr>
<td>Differential pressure air switches</td>
<td>8-6</td>
</tr>
<tr>
<td>Field loss relays</td>
<td>8-6</td>
</tr>
<tr>
<td>Brush monitoring systems</td>
<td>8-7</td>
</tr>
</tbody>
</table>
Motor Assembly and Final Testing

Section Outline

Steps before assembling the motor ... 9-3
 Verify field and interpole polarity ... 9-4
 Verify brush grade and size ... 9-4
During assembly .. 9-5
 Insulated bearing housing or shaft ... 9-5
 Brushholder alignment .. 9-6
After assembly .. 9-6
 Brush seating ... 9-6
 Establishing commutator film ... 9-8
 Brush neutral .. 9-8
 Inductive kick method ... 9-8
 AC method ... 9-8
 Clockwise rpm vs. counterclockwise rpm .. 9-9
 Observation .. 9-9
 Permanent magnet machines .. 9-9
 Brushholder spacing .. 9-9
 Brush spacing adjustment of double brush-per-post designs 9-10
 Compound field polarity .. 9-11
 Interpole polarity ... 9-11
Final testing .. 9-12
 Series motor no-load testing ... 9-12
 No-load testing when rated voltages are available 9-12
 No-load testing when rated voltages are not available 9-13
 Speed versus field and armature voltage .. 9-13
 Assessing brush sparking ... 9-13
 Dynamometer testing .. 9-15
 Back-to-back “closed loop” testing (Kapp test) .. 9-16
Load testing a DC generator using the salt water rheostat method .. 9-16
Brush pencil neutral test .. 9-17
Black band test ... 9-18
DC test panels .. 9-20
On-Site Troubleshooting

<table>
<thead>
<tr>
<th>Section Outline</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>10-2</td>
</tr>
<tr>
<td>Newly-installed motors</td>
<td>10-2</td>
</tr>
<tr>
<td>The motor does not start or does not run properly</td>
<td>10-3</td>
</tr>
<tr>
<td>Motor will not start</td>
<td>10-3</td>
</tr>
<tr>
<td>Problem in the motor</td>
<td>10-3</td>
</tr>
<tr>
<td>Problem in the control circuit</td>
<td>10-3</td>
</tr>
<tr>
<td>Overload relay trips or fuses blow when motor is energized</td>
<td>10-3</td>
</tr>
<tr>
<td>Motor runs faster than rated speed</td>
<td>10-4</td>
</tr>
<tr>
<td>Motor runs backwards</td>
<td>10-4</td>
</tr>
<tr>
<td>Brushes spark and arcing increases with load</td>
<td>10-4</td>
</tr>
<tr>
<td>Motor runs over temperature</td>
<td>10-4</td>
</tr>
<tr>
<td>Blower</td>
<td>10-4</td>
</tr>
<tr>
<td>Covers and gaskets</td>
<td>10-5</td>
</tr>
<tr>
<td>Missing fans</td>
<td>10-5</td>
</tr>
<tr>
<td>Drives and controls</td>
<td>10-5</td>
</tr>
<tr>
<td>Machines that have been in service</td>
<td>10-5</td>
</tr>
<tr>
<td>Motor runs faster than rated speed</td>
<td>10-5</td>
</tr>
<tr>
<td>Motor runs slower than rated speed</td>
<td>10-5</td>
</tr>
<tr>
<td>Sparking at the brushes</td>
<td>10-5</td>
</tr>
<tr>
<td>Sparking causes and cures</td>
<td>10-6</td>
</tr>
<tr>
<td>Generators</td>
<td>10-7</td>
</tr>
<tr>
<td>Generator does not produce voltage</td>
<td>10-7</td>
</tr>
<tr>
<td>Generator does not produce the correct voltage</td>
<td>10-7</td>
</tr>
</tbody>
</table>
Failure Analysis

Section Outline

<table>
<thead>
<tr>
<th>Section Outline</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summary of stresses</td>
<td>11-2</td>
</tr>
<tr>
<td>Root cause methodology</td>
<td>11-3</td>
</tr>
<tr>
<td>Root cause methodology forms</td>
<td>11-5</td>
</tr>
<tr>
<td>Photos of armature failures</td>
<td>11-8</td>
</tr>
<tr>
<td>Guide to commutator appearance</td>
<td>11-10</td>
</tr>
<tr>
<td>Photos of commutator failures</td>
<td>11-11</td>
</tr>
<tr>
<td>Photos of brush and brushholder failures</td>
<td>11-12</td>
</tr>
<tr>
<td>Photos of field coil, series and interpole failures</td>
<td>11-13</td>
</tr>
<tr>
<td>Photos of compensating winding failures</td>
<td>11-14</td>
</tr>
<tr>
<td>Appearance of the most common shaft failures</td>
<td>11-15</td>
</tr>
<tr>
<td>Photos of shaft failures</td>
<td>11-16</td>
</tr>
<tr>
<td>Photos of bearing failures</td>
<td>11-18</td>
</tr>
<tr>
<td>Photos of mechanical failures</td>
<td>11-20</td>
</tr>
</tbody>
</table>
Index
Index

A

Accessories
- brush monitoring systems, 8-7
- differential air pressure switches, 8-6
- encoders
 - absolute, 8-6
 - optical, 8-6
- field loss relays, 8-6
- resolvers, 8-6
- space heaters, 8-4
- tachometers, 8-5
- ventilation, 8-2

Armature
- balancing, 5-21
- banding
 - fiberglass, 5-18
 - calculating centrifugal force, 5-19
 - converting steel banding to, 5-18
 - estimating weight of coil extensions, 5-19
 - procedure, 5-19
 - tensile strength, 5-18
- finishing the armature, 5-21
- steel, 5-18
- tips, 5-21
- commutator
 - soldering commutators, 5-15
 - inspection of soldered joint, 5-16
 - production soldering, 5-16
 - TIG-welded commutator connections, 5-16
 - tips, 5-15
- connections (joints), checking with infrared, 5-24
- data, 5-8
- DC machine data sheet, 5-25
- eddy currents in armature cores, 5-8
- failures, photographs of, 11-8
- frog-leg windings, 5-6, 5-26
- lap windings, 5-3
- nomenclature, 1-6
- rewinding cautions
 - changing wire size, 5-9
 - increasing horsepower, 5-9
 - odd turns, 5-8
 - stripping, 5-9
- rewinding tips
 - coil bracing, 5-14
 - coil insertion, 5-11
 - coils, 5-11
 - fitting the coils, 5-12
 - preparing the core for rewind, 5-10
 - slot liners, 5-10
 - soldering commutators, 5-15
 - TIG-welded commutator connections, 5-16

Assembly and testing
- after assembly, 9-6
- brush neutral, 9-8
 - AC method, 9-8
 - clockwise rpm vs. counterclockwise rpm, 9-9
 - inductive kick method, 9-8
 - observation, 9-9
 - permanent magnet machines, 9-9
 - brush seating, 9-6
 - brush spacing adjustment of double brush-per-post designs, 9-10
 - brushholder spacing, 9-9
 - commutator film, establishing, 9-8
 - compound field polarity, 9-11
 - interpole polarity, 9-11
- before assembly, 9-3
 - verify brush grade and size, 9-4
 - verify field and interpole polarity, 9-4
- during assembly, 9-5
 - brushholder alignment, 9-6
 - insulated bearing housing or shaft, 9-5

B

Balancing, armature, 5-21

Banding
- fiberglass, 5-18, 6-4
 - calculating centrifugal force, 5-19
 - converting steel banding to, 5-18
 - estimating weight of coil extensions, 5-19
 - procedure, 5-19
 - tensile strength, 5-18
- protective, 6-8

varnish, types of, 5-14
- wedges, 5-14
- split-pitch coils, frog-leg windings, 5-29
- tests
 - growler test, 4-2
 - high-frequency bar-to-bar test, 4-3
 - high potential test, 4-3
 - low-resistance bar-to-bar test, 4-2
 - megohmmeter test, 4-2
 - surge comparison test, 4-3
- troubleshooting tips
 - equalizers, 5-24
 - locating a grounded coil, 5-23
 - locating a shorted coil, 5-23
 - only one bar off, 5-22
 - use of growler, hacksaw blade, 5-23
- wave windings, 5-5
- winding terms
 - commutator pitch, 5-6
 - equalizers, 5-4
 - frog-leg windings, 5-6, 5-26
 - lap windings, 5-3
 - wave windings, 5-5
steel, 5-18
string, 6-7
Teflon, 6-8
tips, 5-21

Bearing
condition, 3-12
failures, photographs of, 11-18
nomenclature
ball bearing, 1-8
sleeve bearing, 1-8

Blowers, 3-3, 10-4

Bracing, coil, 5-14

Brushes
brush grade and size, 9-4
brush life, 3-11
brush neutral
adjusting
AC method, 9-8
clockwise rpm vs. counterclockwise rpm, 9-9
inductive kick method, 9-8
observation, 9-9
permanent magnet machines, 9-9
theory of, 2-5
brush pressure and spring tension, 3-8
disassembly and inspection, 3-8
failures, photographs of, 11-12
monitoring systems, 8-7
nomenclature, 1-7
seating, 9-6
spacing adjustment of double brush-per-post designs, 9-10
sparking
arcing increases with load, 10-4
assessing, 9-13
causes and cures, 10-6

Brushholders
alignment, 9-6
connections, 3-9
disassembly and inspection, 3-8
failures, photographs of, 11-12
nomenclature, 1-7
spacing, 9-9

Bucking (suicide) fields, 7-3

Coil bracing, 5-14

Coils
armature, 5-11
fitting, 5-12
insertion, 5-11
locating grounded armature coil, 5-23
locating shorted armature coil, 5-23

Commutator
appearance, guide to, 11-10
banding replacement, 6-7
basics, 6-2
condition, 3-4
connections, TIG-welded, 5-16
designs, 6-2
dimensions, original and minimum
ABB, 6-10
Baldor, 6-10
General Electric, 6-10
P&H (Harnischfeger), 6-13
Reliance, 6-13
Toshiba, 6-13
WEG, 6-14
Westinghouse, 6-14
failures, photographs of, 11-11
film, establishing, 9-8
mechanical condition, 3-5
nomenclature, 1-5
pitch, 5-6
riser repairs, 6-8
soldering, 5-15
inspection of soldered joint, 5-16
production soldering, 5-16
tips, 5-15
testing, 4-4, 6-8
torque values, 6-3
turn and undercut, 6-5

V-rings
protective banding, 6-8
replacing, 6-3
string band, 6-7
Teflon band, 6-8
wear patterns, 3-5, 11-10

Compensating windings
failures, photographs of, 11-14
tips for rewinding, 7-10

Connections
brushholder, 3-9
as received template for 2-, 4-, and 6-pole DC machines, 3-14

Carbon brushes, see Brushes

Cautions
armature rewinding
changing wire size, 5-9
increasing horsepower, 5-9
odd turns, 5-8
stripping, 5-9
commutator, never dip, 6-5
Section 12 — Index

Covers
- blowers, 3-3, 8-3, 10-4
- gaskets, 10-5
- internal fans, 3-4, 8-2
- ventilation, 3-2

Current for low field voltage, 1-3

D

- Data sheet, DC machine, 5-25
- DC field strength, 1-2
- DC motor theory, 2-2
- Differential air pressure switches, 8-6
- Disassembly and inspection, 3-1
- Drives and controls, troubleshooting, 10-5

E

- Eddy currents in armature cores, 5-8
- Encoders
 - absolute, 8-6
 - optical, 8-6
- Equalizers
 - armature, 5-4
 - troubleshooting, armature, 5-24

F

- Failures, photographs of
 - armatures, 11-8
 - bearings, 11-18
 - brush and brushholders, 11-12
 - commutators, 11-11
 - compensating windings, 11-14
 - field coils, series and interpoles, 11-13
 - mechanical, 11-20
 - shafts, 11-15
- Fans
 - internal, 3-4, 8-2
 - missing, 10-5
- Fiberglass banding, see Banding
- Field coils
 - failures, photographs of, 11-13
 - testing, 4-4
- Field current (amps), 1-2
- Field loss relays, 8-6
- Field strength, 1-2
- Fields
 - bucking (suicide), 7-3

Fundamentals of DC Operation and Repair Tips

- compound
 - general, 7-2
 - theory of, 2-5
 - strength, 1-2
- tips for rewinding
 - aluminum to copper conversion, 7-6
 - compensating windings, 7-10
 - interpoles, 7-8
 - series field coils, 7-7
 - shunt field coils, 7-4
- Flux, magnetic field strength, 2-4
- Frames
 - introduction, 7-2
 - nomenclature, 1-6
- Frog-leg windings, 5-6, 5-26

G

- Generator
 - does not produce correct voltage, 10-7
 - does not produce voltage, 10-7

H

- Horsepower, increasing, 5-9

I

- Inspection
 - disassembly and, 3-1
 - report, 3-13
- Interpoles
 - failures, photographs of, 11-13
 - polarity, 9-4, 9-11
 - testing
 - AC drop test, 4-5
 - current comparison (impedance test), 4-5
 - surge test, 4-5
 - theory of, 2-6
 - tips for rewinding, 7-8

L

- Lap windings, armature, 5-3

M

- Magnetic field strength (flux), theory of, 2-4
- Magnetic force, theory of, 2-3
- Magnets, principles of, 2-2
- Mechanical failures, photographs of, 11-20
- Motor nomenclature, 1-4
N
Nameplate
 correctly interpreting the DC motor, 1-2
 current for low field voltage, 1-3
DC field strength, 1-2
field current (amps), 1-3
resistance multiplier for temperature rise, 1-3
Neutral
 brush pencil, 9-17
 working, 2-8
Nomenclature
 ball bearing, 1-8
 carbon brush and brushholder, 1-7
 commutator, 1-5
DC armature, 1-6
DC frame, 1-6
DC motor, 1-4
 sleeve bearing, 1-8
O
Odd turns, armature, 5-8
Overload relay trips, 10-3
R
Resistance multiplier for temperature rise, 1-3
Resolvers, 8-6
Root cause methodology, 11-3
Root cause methodology forms, 11-5
S
Series field coils
 failures, photographs of, 11-13
 tips for rewinding, 7-7
Shafts
 appearance of most common failures, 11-15
 failures, photographs of, 11-16
Shunt fields, tips for rewinding, 7-4
Slot liners, armature, 5-10
Soldering
 commutators
 inspection of soldered joint, 5-16
 production soldering, 5-16
 tips, 5-15
Space heaters, 8-4
Sparking, see Brushes
Stabilized shunt fields, 7-2, 7-7, 9-11
Steel banding, see Banding
Stresses, summary of, 11-2
T
Tachometers, 8-5
Temperature
 motor runs over temperature, 10-4
 blower, 10-4
 covers and gaskets, 10-5
 drives and controls, 10-5
 missing fans, 10-5
 temperature rise, resistance multiplier for, 1-3
Test form, DC machine drop voltage, 4-6
Testing
 armatures
 growler test, 4-2
 high-frequency bar-to-bar test, 4-3
 high potential test, 4-3
 low-resistance bar-to-bar test, 4-2
 megohmmeter test, 4-2
 surge comparison test, 4-3
 brush neutral
 AC method, 9-8
 brush pencil neutral, 9-17
 clockwise rpm vs. counterclockwise rpm, 9-9
 inductive kick method, 9-8
 observation, 9-9
 permanent magnet machines, 9-9
 commutator, 4-4, 6-8
DC test panels, 9-20
 field coils, 4-4
 final testing, 9-12
 assessing brush sparking, 9-13
 back-to-back “closed loop” (Kapp test), 9-16
 black band, 9-18
 brush pencil neutral, 9-17
 dynamometer, 9-15
 load testing a DC generator using salt water rheostat
 method, 9-16
 no-load testing when rated voltages are available, 9-12
 no-load testing when rated voltages are not available, 9-13
 series motor no-load, 9-12
 speed vs. field and armature voltage, 9-13
 interpoles
 AC drop test, 4-5
 current comparison (impedance test), 4-5
 surge test, 4-5
Theory
 brush neutral, 2-5
 compensating windings, 2-7
 compound fields, 2-5
 DC motor, 2-2
 interpoles, 2-6
magnetic field strength (flux), 2-4
magnetic force, 2-3
magnets, principles of, 2-2

TIG welding
commutator connections, 5-16
equipment, 5-17
joint preparation, 5-17
operator skill and proper welding procedures, 5-17
summary of, 5-17

Troubleshooting

generators
does not produce correct voltage, 10-7
does not produce voltage, 10-7

machines that have been in service
motor runs faster than rated speed, 10-5
motor runs slower than rated speed, 10-5
sparking at the brushes, 10-5

newly-installed motors
brushes spark and arcing increases with load, 10-4
does not start or does not run properly, 10-3
overload relay trips or fuses blow when motor is energized, 10-3
runs backwards, 10-4
runs faster than rated speed, 10-5
runs over temperature, 10-4
blower, 10-4
covers and gaskets, 10-5
drives and controls, 10-5
missing fans, 10-5
will not start, 10-3
sparking causes and cures, 10-6

V

V-rings
protective banding, 6-8
replacing, 6-3
string band, 6-7
Teflon band, 6-8

Varnish, types of, 5-14

Ventilation
blowers, 3-3, 8-2, 10-4
covers, 3-2, 8-3
DC motor, 8-2
gaskets, 8-3
improvement tips, 8-3
internal fans, 3-4, 8-2

W

Wave windings, armature, 5-5
Wear patterns, commutator, 3-5
Wedges, armature, 5-14